Semi-Clifford and Generalized Semi-Clifford Operations

نویسندگان

  • Salman Beigi
  • Peter W. Shor
چکیده

Fault-tolerant quantum computation is a basic problem in quantum computation, and teleportation is one of the main techniques in this theory. Using teleportation on stabilizer codes, the most well-known quantum codes, Pauli gates and Clifford operators can be applied fault-tolerantly. Indeed, this technique can be generalized for an extended set of gates, the so called Ck hierarchy gates, introduced by Gottesman and Chuang (Nature, 402, 390-392). Ck gates are a generalization of Clifford operators, but our knowledge of these sets is not as rich as our knowledge of Clifford gates. Zeng et al. in (Phys. Rev. A 77, 042313) raise the question of the relation between Ck hierarchy and the set of semi-Clifford and generalized semi-Clifford operators. They conjecture that any Ck gate is a generalized semi-Clifford operator. In this paper, we prove this conjecture for k = 3. Using the techniques that we develop, we obtain more insight on how to characterize C3 gates. Indeed, the more we understand C3, the more intuition we have on Ck, k ≥ 4, and then we have a way of attacking the conjecture for larger k.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

C[subscript 3], semi-clifford and generalized semi-clifford operations Citation

Fault-tolerant quantum computation is a basic problem in quantum computation, and teleportation is one of the main techniques in this theory. Using teleportation on stabilizer codes, the most well-known quantum codes, Pauli gates and Clifford operators can be applied fault-tolerantly. Indeed, this technique can be generalized for an extended set of gates, the so called Ck hierarchy gates, intro...

متن کامل

Clifford Wavelets and Clifford-valued MRAs

In this paper using the Clifford algebra over R4 and its matrix representation, we construct Clifford scaling functions and Clifford wavelets. Then we compute related mask functions and filters, which arise in many applications such as quantum mechanics.

متن کامل

On the Fischer-Clifford matrices of a maximal subgroup of the Lyons group Ly

The non-split extension group $overline{G} = 5^3{^.}L(3,5)$ is a subgroup of order 46500000 and of index 1113229656 in Ly. The group $overline{G}$ in turn has L(3,5) and $5^2{:}2.A_5$ as inertia factors. The group $5^2{:}2.A_5$ is of order 3 000 and is of index 124 in L(3,5). The aim of this paper is to compute the Fischer-Clifford matrices of $overline{G}$, which together with associated parti...

متن کامل

On the Fischer-Clifford matrices of the non-split extension $2^6{{}^{cdot}}G_2(2)$

The group $2^6{{}^{cdot}} G_2(2)$ is a maximal subgroup of the Rudvalis group $Ru$ of index 188500 and has order 774144 = $2^{12}.3^3.7$. In this paper, we construct the character table of the group $2^6{{}^{cdot}} G_2(2)$ by using the technique of Fischer-Clifford matrices.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009